Global Climate Response to Anthropogenic Aerosol Indirect Effects: Present Day and Year 2100
نویسنده
چکیده
[1] Aerosol indirect effects (AIE) are a principal source of uncertainty in future climate predictions. The present study investigates the equilibrium response of the climate system to present‐day and future AIE using the general circulation model (GCM), Goddard Institute for Space Studies (GISS) III. A diagnostic formulation correlating cloud droplet number concentration (Nc) with concentrations of aerosol soluble ions is developed as a basis for the calculation. Explicit dependence on Nc is introduced in the treatments of liquid‐phase stratiform clouds in GISS III. The model is able to reproduce the general patterns of present‐day cloud frequency, droplet size, and radiative balance observed by CloudSat, Moderate Resolution Imaging Spectroradiometer, and Earth Radiation Budget Experiment. For perturbations of Nc from preindustrial to present day, a net AIE forcing of −1.67 W m is estimated, with a global mean surface cooling of 1.12 K, precipitation reduction of 3.36%, a southward shift of the Intertropical Convergence Zone, and a hydrological sensitivity of +3.00% K. For estimated perturbations of Nc from present day to year 2100, a net AIE forcing of −0.58 W m, a surface cooling of 0.47 K, and a decrease in precipitation of 1.7% are predicted. Sensitivity calculations show that the assumption of a background minimum Nc value has more significant effects on AIE forcing in the future than on that in present day. When AIE‐related processes are included in the GCM, a decrease in stratiform precipitation is predicted over future greenhouse gas (GHG)‐induced warming scenario, as opposed to the predicted increase when only GHG and aerosol direct effects are considered.
منابع مشابه
Role of climate change in global predictions of future tropospheric ozone and aerosols
[1] A unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies general circulation model II0 is applied to simulate an equilibrium CO2forced climate in the year 2100 to examine the effects of climate change on global distributions of tropospheric ozone and sulfate, nitrate, ammonium, black carbon, primary organic carbon, secondary organic carbon, sea salt, and...
متن کاملAerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2ES and the role of ammonium nitrate
[1] The latest Hadley Centre climate model, HadGEM2‐ES, includes Earth system components such as interactive chemistry and eight species of tropospheric aerosols. It has been run for the period 1860–2100 in support of the fifth phase of the Climate Model Intercomparison Project (CMIP5). Anthropogenic aerosol emissions peak between 1980 and 2020, resulting in a present‐day all‐sky top of the atm...
متن کاملThe evolution of the global aerosol system in a transient climate simulation
The evolution of the global aerosol system from 1860 to 2100 is investigated through a transient atmosphere-ocean General Circulation Model climate simulation with interactively coupled atmospheric aerosol and oceanic biogeochemistry modules. The microphysical aerosol module HAM incorporates the major global aerosol cycles with 5 prognostic treatment of their composition, size-distribution, and...
متن کاملEffect of chemistry-aerosol-climate coupling on predictions of future climate and future levels of tropospheric ozone and aerosols
[1] We explore the extent to which chemistry-aerosol-climate coupling influences predictions of future ozone and aerosols as well as future climate using the Goddard Institute for Space Studies (GISS) general circulation model II’ with on-line simulation of tropospheric ozone-NOx-hydrocarbon chemistry and sulfate, nitrate, ammonium, black carbon, primary organic carbon, and secondary organic ca...
متن کاملContrasting the direct radiative effect and direct radiative forcing of aerosols
The direct radiative effect (DRE) of aerosols, which is the instantaneous radiative impact of all atmospheric particles on the Earth’s energy balance, is sometimes confused with the direct radiative forcing (DRF), which is the change in DRE from pre-industrial to present-day (not including climate feedbacks). In this study we couple a global chemical transport model (GEOS-Chem) with a radiative...
متن کامل